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Introduction 

• Speaker has been heavily involved with space cryogenics for a 

number of years 

• In-situ resource utilization (ISRU) needs cryogenic technologies to be 

successful 

• Cryogenic technologies being studied for advanced upper stages and 

propellant depots have significant overlap with ISRU 

• Objectives of the talk 

– Familiarize the audience with ISRU propellant production 

– Show the need for cryogenic technologies in ISRU 

– Demonstrate the commonality with propellant depot work already underway 

– Suggest areas were ISRU specific research is required 
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Vision of In-Situ Resource Utilization (circa 2005) 
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Mars Propulsion ISRU 

• Design Reference Mission 5.0 (NASA baseline Mars mission) 

– Oxygen generated from Martian atmosphere using solid oxide CO2 

electrolyzers (SOCEs) 

– Rest of propellants brought from earth 

– Liquefier used to store liquid oxygen in tank, uses cryocooler 

– Cryocoolers also used to assist with storage of methane and hydrogen 

• Alternates 

– Several alternate schemes for available breaking atmospheric CO2 

– Electrolysis can be used on water to produce both hydrogen and oxygen 

(current studies show abundant ice in polar regions) 

– Methane propellant can be generated from either hydrogen brought from 

earth or hydrogen generated on Mars 

– Metal-oxide bearing rocks can be split apart for oxygen similar to lunar 

regolith 
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Lunar Propulsion ISRU 

• Oxygen extraction from lunar regolith 
– Lunar highland regolith ~40% oxygen but breaking silicate bonds require high temperature (as 

much as 2500 C) 

– Lunar mare regolith on average 14% iron oxide compounds such as ilmenite, olivine, and 

pyroxene: can have oxygen extracted at lower temperatures with hydrogen feed stock 

• Water and volatile extraction from lunar polar regolith 
– Lunar Prospector indicates the possibility of water ice at both poles 

– Water can be electrolyzed   
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• Refueling for trans-Mars 

injection from near lunar way-

point 
– ~60% of LEO trans-Mars injection 

mass is hydrogen and oxygen 

– Stages fueled with lunar ISRU only 

40% of the LEO launch weight of LEO 

fueled systems 

 



Phobos/Deimos Propulsion ISRU 

• First proposed by O'Leary (1984) 

• More recent work in Lee (2009)  

• Significantly less delta-v than landing on Martian surface 

• Resource potential 

– Regolith for oxygen production 

– Electrolysis of water if water can be found 

• Recent observation suggest a good potential for water 

• Questions to be answered for an ISRU design 
– What are  the  properties  of  the  regolith?  

– What  volatiles  are  near  the  surface?  

– How  deep  is  the  water  (ice  or  hydrates)  located?  

– Can  ISRU  operations  in  very  low-g  be  performed  efficiently?  
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ISRU “Gear” Ratios 

Propulsion “Gear” ratio = amount of mass in low Earth orbit (LEO)  

required to transfer a unit of mass to the desired destination 

• (Mass in LEO/Mass payload landed on Moon) ~4 for cargo at lunar 

south pole  

• (Mass in LEO without lunar fueling/Mass in LEO with lunar refueling) 

~2.5 for Mars Mission 

• (Mass in LEO/Mass in Mars orbit) ~5 similar to mass landed on 

Phobos/Deimos 

• (Mass in LEO/Mass landed on Mars surface) ~10.5 aerobraked -- 

~17.2 all propulsive 
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*Numbers estimated from Rapp (2008) 
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Why Cryogenics for ISRU? 

• Easily produced ISRU propellants are gases at room temperature with 

low densities 

• High pressure and metal hydride storage have mass to storage 

volume ratios unsuitable for rocketry 

– Rocket equation contains two major terms: isp and mass ratio -- low 

numbers in either produce low performance 

• Cryogenic storage is mandatory for high performance rockets 
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Cross-Cutting Benefits of Space Cryogenics 
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Present Challenges for In-Space Cryogenic Systems 

• We have no demonstrated capability to store cryogenic 

propellants in space for more than a few hours 

– SOA is Centaur’s 9 hours with boil-off rates on the order of 30% 

per day 

• We have no demonstrated, flight-proven method to gauge 

cryogenic propellant quantities accurately in microgravity 

– Need to prove methods for use with both settled and unsettled 

propellants 

• We have no proven way to guarantee we can get gas-free 

liquid cryogens out of a tank in microgravity 

– Gas-free liquid is required for safe operation of a cryo propulsion 

system 

– Need robust surface-tension liquid acquisition device (LAD)            

analogous to those in SOA storable propulsion systems 

– Only known experience in the world is the single flight of the 

Russian Buran (liquid oxygen reaction control system) 

• We have no demonstrated ability to move cryogenic liquids 

from one tank (or vehicle) to another in space 
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National Aeronautics and Space Administration 

www.nasa.gov 

Orbital Aggregation & Space 

Infrastructure Systems (OASIS) 

    Xenon 

 

 

Liquid Oxygen 

 

 

 

 

 

 

 

 

Liquid 

Hydrogen 

Hybrid 

Propellant 

Module 

Infrastructure Elements: 

Lunar Gateway  Space Station                    Crew Transfer Vehicle          Solar Electric Propulsion      Chemical Transfer Module 

Objectives: 
• Develop robust and cost effective concepts in support 

of future space commercialization and exploration 
missions assuming inexpensive launch of propellant 
and logistics payloads. 

• Infrastructure costs would be shared by Industry, NASA 

and other users. 
 

Accomplishments: 

• A reusable in-space transportation architecture 

composed of modular fuel depots, chemical/solar 

electric stages and crew transportation elements has 

been developed.  
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Propellant Transfer and Depots 

Different types of depots for space exploration architectures 
(provided to Augustine Commission “Beyond Earth Orbit” 

Subcommittee 2009) 

 

Pre Deployed Stage Tanker Semi-Permanent 
Depot 

Features: 

• Advanced CFM 

• Long term loiter 

• Rendezvous & 

Docking 

Features: 

• Advanced CFM 

• Long term loiter 

• Rendezvous &Docking 

• Low G Fluid Transfer 

Features: 

• Advanced CFM 

• Long term loiter 

• Rendezvous &Docking 

• Robust MMOD 

Protection 

• Dedicated Power System 
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Recent Technology Maturation in Pictures 
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Sight Glass during Line 

Chilldown 

LH2 Active Cooling – Thermal Test (RBO) and Acoustic Test (VATA) 

LAD Outflow Test 

Scaling Studies – MLI and Active 

Thermal Control 

RF Mass Gauging 

(MLI) Penetration Heat Leak Study  
Composite Strut Study  
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Cryogenic Storage Control Technology Approach 
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Reduced Boil-off Technologies 

• Eliminate heat leak into the storage tank, re-condense 
vapor,  or potentially sub-cool propellant 

• 90 K cryocoolers to achieve reduced boil off for hydrogen 
storage 

• Demonstrated capability of ~50% reduction in tank heat 
load  

Efficient Low-g Venting 

• Thermodynamic Vent System (TVS) ensures that 
only gas phase is vented in low gravity without using 
settling thrusters. 

• De-stratifies propellant tank contents, with mixer 

 

 

Spray Bar  Axial Jet 

Flight representative Turbo-

Brayton Cryocooler used in  

technology maturation 
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Tank Chill and Fill Technology Approach 
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• Current baseline approach is to use 

micro–g thruster settling to acquire 

propellants and a no-vent Fill 

procedure to transfer propellants.  

• Recommended approach requires 

minimal additional hardware  

• No-vent Fill  

– Uses evaporative cooling and sub-

cooling to  chill cryogenic tank and 

transfer fluid without venting 

– Demonstrated in 1990’s at NASA 

Glenn Plumbrook station vacuum 

chamber 

• Both micro-g settling and no-vent fill 

will require proof of concept testing 
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Mars Liquefier 
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 Liquefaction and Storage 

− Cryocoolers are used to cool the process 

stream and condense the gas to liquid 

− Liquid is transferred to insulated tanks for 

storage 

 Assumptions 

− Process stream is purified prior to liquefaction 

− Liquid can be stored in ascent stage 

 Tank insulation will have to trade poorer performing 

but non-vacuum jacket insulation with weight of 

vacuum jacket 

 Current liquefier approach requires use of a catch  

tank for collection 

−  Optional approach could liquefy in the storage 

tank, but may lower the process efficiency 

 Prior work has used Pulse Tube Cryocoolers but  

recent Turbo-Bratyon Cryocoolers may be better 

for large scale 
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Mars Atmosphere Insulation 

• Although low pressure, the Mars atmosphere is sufficient to 

significantly degrade MLI performance due to gas conduction 

• Alternate insulation approaches include foam (worst performance), 

aerogel, aerogel/MLI, and MLI/vacuum jackets 

• A vacuum jacket designed to only work on Mars can be significantly 

lighter  

– Only has to support the 5 torr Martian atmospheric pressure versus the 760 

torr of Earth 

– Typical concepts launch with pad pressure in the vacuum jacket during 

launch which is then vented to space en route to Mars 
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Insulation Performance versus Pressure 
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Fesmire (2014) 
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Concluding Remarks 

• ISRU is of significant advantage to human exploration 

• Cryogenic technologies are required for ISRU success 

• Cryogenic technologies from upper stages and depots for storage and 

transfer can be applied to ISRU 

– TVS systems for storage and venting 

– Reduced boil-off for long term storage 

– Large capacity space rated cryocoolers 

– Low loss transfer systems (all locations) and low-g transfer (Lunar, 

Phobos/Deimos) 

• ISRU unique technologies need further development 

– Liquefier is unique to ISRU although cryocoolers used may not be 

– Mars surface insulation cannot use the space vented MLI of upper stages 

and depots without adding a vacuum jacket, but may still be able to take 

advantage of cryocoolers and boil-off reduction 
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